
Integrating Smart Meter and Electric Vehicle Charging 

Data to Predict Distribution Network Impacts 

Myriam Neaimeh 

Graeme Hill 

Phil Blythe 
Transport Operations Research Group 

Newcastle University, Newcastle, UK 

 

Robin Wardle 

Jialiang Yi 

Phil Taylor 
Newcastle Institute for Research on Sustainability 

Newcastle University, Newcastle, UK 

 
Abstract— The North East of England is hosting two 

internationally leading trials of electric vehicles (EVs) and smart 

grid applications. These trials are enabling the region to be 

pioneering in the understanding of the practical use and 

deployment of low carbon technologies (LCTs) and their impact 

on UK electrical power networks. This paper describes a 

significant integration of these large scale trials, whereby EV 

charging behaviour data, household electricity demand patterns, 

and models of trial distribution networks are brought together 

in a unique study of the effect of all-electric vehicles on rural 

and urban distribution networks. 

Index Terms-- Electric vehicles, distribution network analysis, 

large scale demonstrations, load profiles, user behaviour. 

I. INTRODUCTION  

The uptake of electric vehicles (EVs) in the UK is 
anticipated to help decarbonise the road transport sector and 
move towards meeting the emission reduction targets of 80% 
compared to 1990 levels [1]. With a number of new EV and 
plug-in hybrid models coming onto the market, it is important 
to investigate what potential impacts a significant take-up of 
EVs may have on the electricity network of the UK, and in 
particular the uncontrolled and clustered re-charging on local 
networks needs to be assessed. This paper looks at the impact 
of clustered domestic re-charging of electric vehicles on two 
local distribution networks. The study will help to identify 
potential challenges and devise strategies to meet the 
anticipated new load on the future grid.  

This work is based on a unique fusion of two extensive 
real world data sets. The SwitchEV project is trialing 44 
electric vehicles in the North East of England for a total period 
of three years. The vehicles are fitted with data-loggers that 
have captured over 85,000 EV journeys recorded second by 
second, and over 19,000 re-charging events recorded minute 
by minute at more than 650 public and 260 private charging 
points [2]. In addition, the three-year Customer Led Network 
Revolution (CLNR) project provides domestic load profiles 
based on one year’s worth of half-hourly power consumption 
data collected from nearly 9000 smart meters; and network 
data and extensively validated network models based on 

existing local distribution networks operated by Northern 
Powergrid, the regional distribution network operator.  

Previous studies have looked at the impacts of the 
projected growth in the electrification of the transport sector 
on distribution networks. They have illustrated the potential 
impact of EVs on Low Voltage (LV) networks, including 
voltage variations, branch thermal limits and system losses, 
using simulated data for charging behaviour. These charging 
behaviour data were derived from driving pattern data 
collected in national transportation surveys to estimate certain 
aspects of EV use (e.g.  Journey start time, journey distance, 
energy used, parking location, time of parking, etc). These 
studies assumed that users start to charge their cars 
immediately on arriving home. In addition, the studies did not 
consider a public charging infrastructure to be available and 
considered that users would only charge at home [3]-[6]. 

The significance of the present work is that it uses all-
electric vehicle usage patterns and charging behaviour 
captured from an extensive real-world EV trial. This avoids 
the need to make assumptions about the stochastic nature of 
vehicle use and will minimise uncertainties associated with 
simulated charging demand. While previous studies 
differentiated between urban and rural distribution networks, 
the present work also makes this differentiation for residential 
customer base and EV load profiles. The CLNR smart meter 
data set [7] is parameterised by socio-demographic variables 
which allow selection of representative load profiles 
appropriate to the network customer population under study; 
by additionally using knowledge of the EV users on trial it is 
possible to construct load profiles representative of an EV-
owning customer population. 

II. DATA 

A. SwitchEV project 

The SwitchEV project resulted in the collection, 
processing and analysis of high resolution spatio-temporal real 
world data of electric vehicles driving and charging events. 
The data are diverse and give insights into true behaviour of 
EV users. Different types of users are recruited for the trial; 
they have access to an extensive charging infrastructure; the 
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vehicles used in the trial are mainly production vehicles 
provided by Nissan (Leaf) and Peugeot (Ion) and are leased to 
the participants for 6 months. A total of five cohorts of drivers 
have leased the vehicles so far. As a result, the data capture 
how people would use the cars in a real world context. 

1) Real and diverse EV usage patterns (charging and 

driving) 
The variables recorded during charging include the time, 

battery current and voltage and state of charge of the battery. 
These are then used to determine secondary variables such as 
the duration of a charge event and energy transferred. While 
this work is specifically interested in the charging profile, the 
driving profile (i.e. behaviour and driving conditions) is also 
important because it determines the state of charge (SoC) of 
the EV battery before it is plugged in for charging. The SoC 
consequently affects the charging profile. For example, at a 
lower state of charge the battery will take more time and 
energy to return to a level of charge that makes the driver 
comfortable in using the vehicle again. The dataset records 
State of Charge levels (Fig.1) which illustrate the behavioural 
diversity of SwitchEV users and lead to a diverse range of 
charging profiles that capture the stochastic nature of user 
behaviour. 

The SwitchEV dataset records trip lengths varying from 
less than 1km to over 100km and a spread of the number of 
trips made before another charging event. Previous work using 
the data has demonstrated that the driving behaviour of users 
(i.e. speed), the topography of the road network and the 
network conditions (i.e. free flow, congested) will affect the 
driving energy efficiency of the vehicle and the residual 
energy at the end of a driving event [8]. The SwitchEV trial 
took place over different seasons which enabled the capture of 
the effects of outside temperature. Temperature affects driving 
efficiency, as lower temperatures typically lead to the use of 
the in-car heater, which increases the energy used whilst 
driving and subsequently further lowers the SoC. 

The boxplots in Fig.1 show the State of Charge of the 
battery for over 19,000 charging events. The vertical 
dimension of the boxes illustrates the spread of data and 75% 
of the data points are above the lower boundary of the boxes. 
The horizontal bold lines show the median SoC’s, 58% and 
94% for SoC Start (left) and SoC End (middle) respectively. 
The boxplot at the right represents the values of the difference 
between the SoC end and SoC start of a charging event. 

 
 
Figure 1. Boxplots of State of Charge (SoC) of the Battery. Before charging 

(left), after charging (middle), difference between end and start SoC (right). 

 

 

 

2) Real and varied charging infrastructure 
The SwitchEV trial is distinctive because it is operating in 

collaboration with the Charge Your Car (CYC) ‘Plugged in 
Places’ project, which is operating the most extensive regional 
charging network in Europe with more than 850 charging 
posts installed in public, work and home locations in the 
region to date. As a consequence, drivers of SwitchEV 
vehicles are not limited by one charging location but have real 
and varied options about when and where to charge. Their 
homes and work places can be equipped with domestic 
charging units, and they can have access to on-street charging 
posts and twelve 50kW Quick Chargers (QC) installed at 
strategic locations around the region. The SwitchEV data 
identify the charging locations used and the energy transferred 
at each of these locations. This information allows a derivation 
of a realistic proportion of home charging events. 

3) Keepership type and residence setting 
The SwitchEV trial recruits private and fleet users; the 

charging profiles of private users only are used in this work. 
The ONS Postcode Directory (ONSPD) was used to determine 
the residence setting of the users on the trial (i.e. urban vs 
rural). Postcodes on the ONSPD have been assigned to the 
urban or rural category of the output area into which each falls 
[9]. The urban / rural category was determined from the 
Directory for the households of SwitchEV participants using 
their postcode; 70% of SwitchEV users reside in urban areas 
while 30% reside in rural areas. Fig.2 shows the percentage of 
the average energy transferred at different locations per hour 
of the day for private urban and rural SwitchEV participants. It 
can be observed that home charging picks up in the afternoon 
until early morning for both participant types; however, rural 
users rely more on domestic charging compared to urban 
users. 

 

 

Figure 2. Percentage Energy transferred at each hour of the day at different 

charging locations. Urban Users (top figure), Rural Users (lower figure). 

 

B. Customer Led Network Revolution (CLNR) 

1) Smart Meters  
CLNR is conducting a series of monitoring trials using 

over 9000 smart meters in residential, industrial and 
commercial locations within the UK to understand current and 



emerging load and generation profiles. The CLNR smart 
meter dataset is classified by household income, presence of 
under 5s or over 65s, tenure, household thermal efficiency, 
and rurality

1
. A mixed representative population of domestic 

load profiles of the study areas was extracted from the CLNR 
dataset by mapping UK ONS

2
 data of the study areas to the 

CLNR data classifications. Table 1 summarises the network 
and location parameters. Properties in the two regions are 
mostly mid-20th century semi-detached houses with adjoining 
off-street parking. Some communal parking facility is also 
evident. Vehicle ownership is high, and many households own 
multiple vehicles. Given these observations, these populations 
are used as model populations of potential future EV owners 
on their representative networks. 

Table 1. Summary of LV network and population parameters. 
 “Urban” “Rural” 

Substation 6.6kV / 400V 

500kVA 

20kV / 400V 

315kVA 

Feeders 4 2 

Total LV customers 288 189 

Number of Customers per 

LV feeder 

A-59, B-66, 

C-84, D-79 

A-123, B-66 

Vehicle Ownership 86% 74.6% 

No. of vehicles in vehicle-

owning households 

1.7 1.5 

ONS Morphology Code 1 (Urban) 3 (Rural) 

House thermal efficiency Medium Medium 

Percentage households with 

under 5s or over 65s 

44% 40% 

 

Equivalent Annual Income 
(gross) 

60%: >£30k 
35%: £15k - £30k 

5%: <£15k 

18%: >£30k 
62%: £15k - £30k 

20%: <£15k 

Tenure Effective 100% 

home ownership 

37% renting 

63% owned 

Household occupancy 97% 97% 

 

2) Network Modelling 
Previous work suggests that densely-populated urban and 

sparsely-populated rural LV networks are both likely to be 

vulnerable to the mass uptake of EVs [4]; as these two 

network types are estimated to represent approximately 80% 

of UK networks [6] it is of critical importance to further study 

these scenarios. The CLNR project is studying two real 

networks within Northern Powergrid’s licence area – one 

rural and one urban – in order to inform questions of load 

growth and active network management. Monitoring devices 

installed on these networks collect data from the LV network, 

which supplement SCADA data from the High Voltage (HV) 

network and permit field trials of LV network control 

schemes. Models of the trial networks have been developed 

in IPSA2 steady-state power system simulation software, and 

these have been extensively validated with two years of 

SCADA data and against existing DNO network models (data 

provided by Northern Powergrid). This study uses this set of 

models and data as a foundation for the examination of EV 

load impact. 

The urban network under study (Fig.3) is a 6.6kV network 

supplying several thousand customers, with a mixed load 
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http://data.gov.uk/dataset/rural_and_urban_area_classifications. 
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curve and an early-evening peak. One particular HV/LV 

substation supplying 288 customers via a 500 kVA 

transformer and 4 LV feeders is studied in detail as a test case 

for EV penetration. 

 
Figure 3. Schematic diagram of the 6.6kV case-study urban network. 

 

Fig.4 shows the rural network under investigation. This 

consists of a 20kV feeder approximately 40km long 

supplying a number of towns in Northumberland in northern 

England. Three HV/LV substations supply the town; this 

paper focuses on one of these which supplies 189 residential 

properties through two multiply-branched LV feeders. 

The LV network sections under study are exclusively 

residential with no industrial or commercial facilities or 

public EV charging infrastructure supplied by the HV / LV 

transformer. 

 
Figure 4. Schematic diagram of the 20kV case-study rural network. 

 

3) Network Validation 
Representative power consumption data collected from 

the LV monitoring system from two mid-weekdays for both 

http://data.gov.uk/dataset/rural_and_urban_area_classifications


the urban and rural networks were compared with randomised 

customer group demands (sampled from the smart meter 

dataset), to confirm that the modelled networks and simulated 

customer groupings approximated the real network loading. 

Urban and rural LV network measurement data were 

available for mid-January 2013 and mid-April 2013 

respectively; customer smart meter data were collected during 

2011 / 2012, so network simulation using midweek customer 

load profiles for January 2012 and April 2012 respectively 

were compared with LV measurement data for January 2013 

and April 2013. Fig.5 shows the results of this comparison. 

Temperature correction for the difference in years was not 

performed on the data, but an informal inspection of UK 

MetOffice temperature data covering the geographic areas 

under study showed similar temperatures on the test days in 

both years. 

 

Figure 5. Comparison of synthesised and measured load profiles for a rural 
and urban substation. 

 

It can be seen that the general mean customer behaviour 

adequately represents the real load on the respective 

networks, particularly total peak loading, and the network and 

customer models are therefore used as a baseline to simulate 

additional EV loading. It has been found
3

 that 50% of 

secondary distribution transformers operate at approximately 

50%-60% of their nameplate capacity, therefore the HV/LV 

transformers under study are not atypical. 

III. METHODS 

A single peak load test day corresponding to Northern 
Powergrid’s system peak load day in January 2012 is studied 
to assess the additional impact of EVs during the existing peak 
loading event. All smart meter data were taken from this 
single day.  

Three levels of EV penetrations – 15%, 30% and 60% – 
were studied to determine the effect of EV uptake and 
clustering on LV networks. EV penetration is defined as the 
ratio of EVs to the number of vehicle-owning households. 
60% penetration represents an approximate nominal upper 
bound on the test networks whereupon all households owning 
more than one vehicle have an EV as the second vehicle.  

Monte Carlo Simulation (MCS) was used to sample the 
domestic load profile and EV charging profile populations and 
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 Information provided by Northern Powergrid. 

assign appropriate load profiles to customers on the network. 
Similar work [10] has been conducted using distributions 
modeled from data; the current study uses actual household 
and EV demand measurements. 288 households on the urban 
LV network were randomly assigned load profiles in 
proportion to the local demographic makeup; a defined 
percentage (i.e. 15%,30%,60%) of these users were further 
assigned an EV load profile which was added to their base 
domestic profile. A similar exercise was undertaken to assign 
residential and EV load profiles to the 189 households on the 
rural LV network.  

1000 sets of customer configurations were generated to 
ensure adequate variation of customer behaviour, EV charging 
profiles and customer location on the network. The generation 
of multiple random configurations naturally captures any 
spatial concentration of households with EVs (i.e. at the 
remote end of the longest feeder) which could cause additional 
voltage drops and losses. Fig.6 shows examples from the 
urban profiles population assigned to customers.  

 

 

Figure 6. Urban load profiles randomly assigned to 2 customers in first and 

last iteration. 

 
The average hourly load profiles (expected values) of the 

households on the networks with a defined EV penetration 
were calculated from the 1000 customer groupings. In 
addition the 2.5% and 97.5% lower and upper bounds of the 
data were calculated. Fig.7 illustrates these calculations for the 
remote end of the longest feeder on the urban network at 60% 
EV penetration; the expected values are represented by the 
black dots and 95% of the data fall within the gray area.  

 
Figure 7. Remote end of longest feeder-Urban 60%-Average load values 

(dots) and 95%data bound (gray area). 

 
The networks are simulated as a balanced steady-state 

three-phase network using IPSA2; in consequence, phase 
imbalance caused by phase concentration of EVs will not be 
captured in this study and the estimated maximum voltage 



drop along a feeder phase is likely to be an underestimate. 
Network simulation was performed using the mean and 97.5% 
upper bound load data for the three EV penetration levels, 
producing corresponding power flow and voltage drop results 
for the various configurations of the two networks. 

IV. RESULTS AND DISCUSSION 

Fig.8 shows power demand profiles for the urban and 

rural LV networks on the test day for EV penetration values 

that produce loading exceeding the transformer demand limit. 

Table 2 shows the equivalent maximum voltage drops for 

these cases (maximum drops occurring at times of maximum 

load). It can be seen that in both cases the limiting factor is 

power flow leading to thermal overload. 

 

 
Figure 8. Test day critical demand for urban and rural network. 

 
Table 2. Maximum voltage drops on the test networks. 

 Mean Load 
0% EVs 

Mean Load 
15% EVs Rural 
60% EVs Urban 

97.5% Load 
15% EVs Rural 
60% EVs Urban 

ΔV - Rural -2.33% -2.52% -5.39% 

ΔV - Urban -1.40% -1.72% -2.90% 

 

These results, based on real trials data and differentiating 

between urban and rural settings, suggest that previous 

studies using simulated data could be exaggerating the impact 

of EVs on local urban networks. The urban network is not 

compromised at 60% EV penetration at the 97.5
th
 upper 

demand bound, although at this point the load is approaching 

the transformer rating (500kVA). One reason for this is that 

in an urban area EV owners generally have more access to the 

public charging infrastructure and are not limited by home 

charging; therefore more energy can be supplied to EVs from 

non-domestic sources. Furthermore, EV owners do not 

necessarily start charging at lower battery states-of-charge as 

illustrated in the boxplots in Fig.1. 

However, the rural network was compromised even at 

15% EV penetration at the 97.5
th

 upper demand bound. In 

addition to the variation in network characteristics, EV 

charging profiles for rural users differed as well. As stated 

above, rural users rely on domestic charging more than urban 

users and charging would take place probably after a longer 

journey home, causing a lower SoC start compared to an 

urban EV user. The SoC data indicate that the median SoC 

start for urban users is 56.3% compared to 47.9% for rural 

users. 

In both of the trial networks, it is apparent that EV loading 

significantly erodes the headroom available at peak load time 

which implies that the capacity of the network to absorb 

additional large electrical load (e.g. heat pumps) is reduced. It 

appears that although significant EV charging is taking place 

away from home, home charging does still take place 

predominantly at peak-loading time. The variance of the peak 

load value suggests that there is a significant amount of 

concurrent charging taking place, though not all of the time; 

management of this through tariffs or control or arbitration 

schemes would seem to be vital to the health of EV-loaded 

LV networks. 

The simulation results also show a general difference 

between the rural and urban network peak loading which 

would originate from the difference in EV charging profiles 

and network topologies and impedances. 

Finally, some limits to this analysis must be noted. 

Neither annualised load growth nor the likely growth in EV 

battery capacities and charger power have been taken into 

account; and, while the HV/LV transformers under study are 

representative, each network will have its own particular set 

of parameters which must be accounted for. 
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